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Abstract 
A maximum entropy method (MEM) map of electron 
density is obtained by maximizing S = - ~ p  log p 
subject to whatever data are available. MEM is 
derived as the only reconstruction technique that is 
consistent with simple and general requirements. The 
method is very widely applicable, but, in this paper, 
attention is focused on the problem of producing 
electron density maps in crystallography. The entropy 
formula can also be derived by analogy with a ther- 
modynamic system of quanta, but it is shown that 
this model can be misleading, and can break down 
in practice. MEM applied to a different problem 
related to quantum fluctuations in the thermodynamic 
model is shown to lead to formulae equivalent to the 
maximum determinant method. It is argued that direct 
MEM will produce superior maps. 

I. Introduction 
Crystallographers wish to produce and use images of 
atomic assemblies of the highest possible quality. 
Generally, these appear as maps of electron density, 
which are then interpreted appropriately. At the high- 
est resolution, a map would be interpreted in terms 
of bonding and anti-bonding orbitals, at lower resol- 
ution as time-averaged atomic positions, and at yet 
lower resolution as indicating larger structures such 
as nucleic acids and o~-helices. The various techniques 
of ab initio structure determination, phase extension 
and refinement, and least-squares refinement, are all 
aimed at producing or improving the quality of a 
map. Although crystallographers have traditionally 
viewed phase extension and refinement differently to 
the ab initio problem, we see these as merely different 
aspects of a continual process of improving the 
quality of the electron density maps. 

There is growing interest in using variational tech- 
niques, in particular maximum entropy (Gull & 
Daniell, 1978), to select a single map for display and 
subsequent interpretation. Such a map is the 'best' in 
the sense of maximizing a given functional. Much 
effort has been expended in the search for suitable 
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improvement formulae, either in reciprocal space 
(Navaza, Castellano & Tsoucaris, 1983) or in real 
space (Hoppe & Gassmann, 1968). 

We argue that one should always select a single 
'best' map by maximizing the entropy (Shannon, 
1948; Jaynes, 1968). It is an accident of technique 
that crystallographic observations are made almost 
entirely in reciprocal space but this should not 
obscure the fact that the final map is to be displayed 
and used in real space. Many other types of data, 
including direct-space measurements, may also be 
available. Logically, each single datum is an extra 
constraint on the allowed maps of positive electron 
density. To avoid inconsistencies, the same map selec- 
tion criterion should be used regardless of the type 
of data and of the resolution at which the map is to 
be interpreted. Several authors (Diamond, 1963; 
Hosoya & Tokonami, 1967; de Rango, Tsoucaris & 
Zelwer, 1974; Wilkins, Varghese & Lehmann, 1983) 
have already introduced the ideas of maximum 
entropy to crystallography, and Bricogne (1984a) has 
related the maximum entropy principle to notional 
probability distribution functions of electron density. 

In this paper we present our understanding of the 
maximum er~tropy principle, and why it should be of 
use to crystallographers. We also relate it to other 
approaches and interpretations, and try to clear up 
some of the confusion that has arisen because, 
unfortunately, maximum entropy is easy to misapply 
and difficult to program. 

Although this paper was written with the phase 
problem, as encountered routinely by crystallogra- 
phers, specifically in mind, we believe the ideas 
expressed here are completely general and apply to 
any problem where a positive map or image is pro- 
duced from limited and noisy data. Consequently, 
the maximum entropy formalism will need no revision 
as novel experimental techniques are introduced to 
help to solve crystal structures. 

First, we set up the general problem of reconstruct- 
ing a map from imperfect data, and present proposed 
solutions. Then, in § 3, we show that maximizing the 
Shannon/Jaynes entropy is the only selection pro- 
cedure that satisfies simple consistency requirements. 
In § 4 we explore the 'thermodynamic' derivation of 
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the entropy formula from a model of discrete classical 
quanta. We also point out (§ 5) some of the dangers 
of taking this model too seriously. In § 6, we show 
how fluctuations within the thermodynamic model 
can be characterized by a different expression (Burg, 
1967, 1972) for the entropy, and that this is equivalent 
to the maximum determinant formula (Tsoucaris, 
1970). Different entropy formulae give different maps, 
and we discuss the differences in § 7. Finally, in § 8 
we summarize our conclusions and outline the present 
state of maximum entropy computing. 

2. Selecting a feasible map 

Solving crystal structures from X-ray diffraction data 
is a supremely difficult inverse problem. Given a 
crystal structure in the form of an electron density 
map p(x), a Fourier transform on the appropriate 
unit cell gives the structure factors 

Fh = J" p(x) exp (27rih. x) d V. (l) 

The inverse problem of calculating p from observed 
structure factors is complicated, not only by inac- 
curacies in the data and by incomplete measurements 
(missing values of F), but also by the lack of phase 
information: diffraction data yield only the amplitude 
of F. For notational simplicity, we restrict ourselves 
to the pure problem of totally undetermined phases, 
though the maximum entropy formalism is equally 
applicable to extended data sets such as arise from 
isomorphous replacement. 

Of all the possible electron density maps only some 
are consistent with the measured diffraction data: we 
call these the 'feasible' maps. Suppose that a structure 
factor is observed as 

Dh= lFhl2 + aO'h, (2) 

where O'h is the standard deviation of the measurement 
and o~ is a random variable, maybe Gaussian, of zero 
mean and unit variance. The likelihood of observing 
a particular data set D from a given crystal p is 

prob (DIp)oc exp (-X2/2) (3) 

xZ= ~, ( Dh--IFhlZ)z/ Cr~,. (4) 
h 

When a large number M of data is observed, values 
of/~2 substantially (more than a few x/M) different 
from M are exponentially improbable, and would 
indicate that the map p failed to fit the data D. In 
practical terms, the feasible set is defined by X 2= M, 
and Gull & Daniell (1978) illustrated the dangers of 
failing to satisfy this condition. 

Nevertheless, there are still very many feasible 
maps that are consistent with typical diffraction data. 
The feasible set allows a range of values for each 
measured but noisy amplitude, has two degrees of 
freedom for each unmeasured (complex) structure 
factor and has a circular degree of freedom for each 

unknown phase. It is thus high-dimensional with an 
awkward toroidal topology. The true crystal structure 
will, of course, be a feasible map, but there is no way 
of extracting it without further measurements or extra 
physical insight. 

In particularly simple inverse problems, for which 
the desired 'map' is just a single number p, the feasible 
set can be presented and used directly as a confidence 
interval, usually of the form a < p < b. In crystallogra- 
phy, the feasible set is far too large and complicated 
to be used directly. As a matter of practical necessity, 
one must present just one feasible map (or at most a 
few). The selection is simply a pragmatic requirement, 
which can, in principle, be satisfied in many different 
ways. The following are three suggestions. 

(l) Positivity: p must be non-negative throughout 
the unit cell. Clearly this is physically necessary in 
crystallography, where p represents an electron 
density. In reciprocal space this constraint is rep- 
resented by the Harker-Kasper inequalities (Harker 
& Kasper, 1948) and by the condition that the Karle- 
Hauptman determinants (Karle & Hauptman, 1950) 
must be non-negative. However, although inequality 
constraints reduce the range (and may be easy to 
program; Papoulis, 1975; Gerchberg, 1974; Saxton, 
1980) they do not usually reduce the dimensionality 
of the feasible set, so that positivity alone does not 
normally produce a well-defined single feasible map. 

To produce a single map it is best to use a vari- 
ational principle and maximize some functional of p 
(Tikhonov & Arsenin, 1977). 

(2) Maximum entropy method (MEM) (Frieden, 
1972; Ables, 1974; Gull & Daniell, 1978; Burch, Gull 
& Skilling, 1983): maximize 

S=-~p(x)  logp(x)dV, p(x)=p(x) /JpdV (5) 

over the feasible maps. This is the technique we 
recommend. It favours smooth maps, since the global 
(unconstrained) maximum of S is given by the uni- 
form map p = constant. Where there might be con- 
fusion with other formulae sometimes called 
'entropy', we shall call S the Shannon/Jaynes 
entropy. 

(3) Maximize 

B =J'log p dV. (6) 

We call B the Burg entropy since, with suitable rein- 
terpretation of symbols, B is the entropy of a time 
series in spectral analysis (Burg, 1967, 1972; Ulrych 
& Bishop, 1975). This technique is closely related to 
the maximum determinant method (Tsoucaris, 1970). 

Many other physical constraints have been used to 
help interpret diffraction data. Examples include 
Sayre's equation (which models atomicity), solvent 
flattening and non-crystallographic symmetry. In so 
far as they introduce new and correct knowledge 
about the electron density, such techniques are clearly 
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beneficial. Indeed, we hope eventually to incorporate 
such extra knowledge into a suitable generalized 
maximum entropy algorithm. 

3. Why maximum entropy? 

MEM is the only variational method consistent with 
simple general conditions that we consider a selected 
map ought to obey. A formal mathematical proof has 
given by Shore & Johnson (1980), and we give a 
simplified justification in more physical terms. We 
impose four requirements. 

(1) We contend that the form R(p)  of the variation 
function should be independent of the type of data 
being analysed. For example, we wish to use the same 
function for X,ray diffraction intensities as for blurred 
direct-space data obtained by electron microscopy, 
particularly as both types of data can be used together 
to obtain better results than from either technique 
alone. With increasing reliance on a variety of 
measurement techniques, this requirement will 
become even more important in future. 

(2) The units of p should not affect-the shape of 
the construction and hence we seek a variation func- 
tion of the form 

R = R ( p ) ,  p ( x ) = p ( x ) / I p d V  , (7) 

which depends only on the relative proportions p of 
the map/9. 

(3) For a discrete representation of an object x = 
i(i = 1, 2, . . . ,  m), knowledge about the proportions 
in one set of cells should not affect the relative propor- 
tions in the remaining cells (unless we have prior 
knowledge of correlations between cells). Suppose 
that p~ + Pk is fixed by observation, leaving the remain- 
ing proportions Pt to be assigned by maximizing R 
over whatever data are available on cells l(l #j ,  l ~ k). 
Since the ratio of pj to Pk does not affect the net 
amount of proportion to be assigned to the other cells 
l, the result of maximizing R over the pt must be 
unaffected if the ratio P/Pk is changed. Accordingly, 
the gradient a/apt of R over the other cells l (strictly, 
its projection onto Y. pt=constant)  must remain 
parallel to its original direction if pj is increased and 
Pk correspondingly decreased. Since the result • of 
maximizing R over constraints is determined by the 
direction of the gradient of R and not the magnitude, 
we may without loss of generality take the gradient 
over l to be completely unaffected by the operation 
(O/Op.i--O/Opk) of increasing pj and decreasing Pk. A 
typical component of this gradient (preserving ~ p) 
is obtained by applying 

(O/Op~-O/Op,,,); l # j , k ;  m # j , k .  (8) 

Thus we have 

(O/Op,--O/Op/,,)Rjk=O for all l, m # j ,  k, (9) 

where Rik=(aR/Opj--OR/Opk). Hence, ORjk/Op~ is 

independent of 1 for all l # j ,  k. A differential O/apt 
independent of the index I can always be annihilated 
by adding an appropriate function of ~ p  to the 
function being differentiated. This has no effect on 
calculations carried out at fixed normalization Y, p = 
1, so that without loss of generality we may take 

ORjk/Opt=O foral l  l # j , k .  (10) 

Rewriting this as 

(O/Opj--O/Opk)OR/dpt=O for all j, k #  l ( l l )  

shows that (O/Opj) (OR~Opt) is independent of j f o r  
all j # I. Again without loss of generality, we may use 
another appropriate function of ~ p to set 

(O/Opj)(OR/Opl)=O for all j # I. (12) 

It follows that OR/Opt depends only on Pt, so that R 
must separate into the form 

R = Y. rl(Pt). (13) 
t 

In the absence of prior knowledge favouring some 
cells more than others, we must take the individual 
functional forms r to be independent of the index l, 
so that R becomes a symmetric sum 

R = ~ r(pt). (14) 
I 

(4) Now consider an object in which the number 
m of cells factorizes, m = ab, or m = abc etc. Data 
about the structure within one subclass (say a) should 
not impose any structure in any other subclass (such 
as b or c), unless one has specific prior knowledge 
of such correlations. 

This is easiest to see when the object is two- 
dimensional, with a and b being the number of cells 
in the vertical and horizontal directions respectively 
(Fig. 1). Data constraining the vertical marginals 

b 

u,= ~, Pu ( i =  1 , . . . ,  a) (15) 
j = l  

should tell us nothing about the horizontal structure, 
and neither should data constraining the horizontal 
marginals 

vj= ~ Pu ( j =  1 , . . . ,  b) (16) 
i=1  

tell us anything about the vertical structure. Although 

1 :.-+J b 

L 
a 

Fig. 1. Marginal sums u and v of a two-dimensional object p. 
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there will usually be many maps Po consistent with 
the given marginals, the only map in which the sub- 
classes decouple is 

Pij = Uil)j" (17) 

This requirement allows us to fix the functional form 
of R. With suitable Lagrange multipliers hi for ui,/xj 
for v~ and u for the normalization ~ P0 = 1, the con- 
strained maximum of R occurs at the extremum of 

2 [ r (p i j ) -  (A, + ftj + u)pij]. (18) 
/ j  

Differentiating and setting Pij -- u~vj yields 

r ' ( u i v j ) = A i - t - p , j + u  for all i,j. (19) 

The multipliers A~ can be written as a function A (ui) 
and similarly tzj as/x(vj) ,  so that 

r ' (u~v j )=A(u , )+ tx (v j )+v  fora l l  i,j. (20) 

If two vj happen to be close in value, differencing gives 

uir"(uivj)=la.'(vj) for all i, (21) 

which can only be satisfied in general if r obeys 

xr"(x) = constant. (22) 

This integrates to 

r( x ) = Ax  log x +  Bx + C, (23) 

giving 

R ( p ) = A Y p l o g p + B Y p + C  (24) 

Additive constants (including ~ p = 1) may be disre- 
garded, and the scale of R is irrelevant. On choosing 
a minus sign to let R have a maxumum rather than 
a minimum, we may thus set 

R(p)  = - E  P log p = S(p).  (25) 

The flexibility disregarded in the proof above corre- 
sponds merely to allowing R to be a monotonic 
function of S. 

We have now shown that any function other than 
the Shannon/Jaynes entropy S is liable to give mis- 
leading results in which data relevant to only one 
dimension corrupt the reconstruction in other 
dimensions. 

It is easy to check that in general S succeeds in 
separating independent dimensions. Let the data be 
(scalar or vector) functions U(u)  and V(v)  of the 
marginals u and v. The u structure may be found by 
maximizing S(u)  over the given value of U and 
normalization. Differentiating the Shannon/Jaynes 

formula gives 

log U i = - A O U / O u  i - o ~  - 1 (26) 

for Lagrange multipliers A and t~. Likewise, the v 
structure is determined by 

log vj = - t z O V / O v j - / 3  - I. (27) 

The full map ought to be Pit = uivj, obeying 

log Po = log ui + log vj 
= - ~ o U / a u , - t z O V / v j  - a - / 3  - 2 .  (28) 

This is indeed exactly what we would reach if we 
maximized S(p)  over U, V and the normalization 
simultaneously in a direct determination of p. In an 
optimization problem, constraint differentials com- 
bine additively via Lagrange multipliers. If individual 
maps are to combine multiplicatively (p = uv), the 
additive property must relate to the map logarithm 

log p = log u + log v. (29) 

Thus the differential OR/Opi must behave like log p, 
so that R takes the 'p log p'  form. 

Of course, we do not suggest that crystallographers 
observe two-dimensional objects by measuring their 
marginals. It just happens that such data are relatively 
easy to analyse. However, suppose a crystallographer 
had used a variational function to obtain the density 
of a P1 crystal from (hkO) and (00/) data. He would 
be disturbed if the density projected down z depended 
on the (00l) data, or if the density projected onto z 
depended on the (hkO) data. Only the 'p log p'  form 
succeeds in separating the dimensions. Inconsistency 
will certainly not disappear just because practical 
data are more complicated, although its effects will 
doubtless be more obscure: the only way to avoid it 
is to use S. 

The theorem that S is the only consistent variational 
function is of fundamental importance because it 
addresses directly the problem of selecting a single 
map from the feasible set. By insisting that the vari- 
ational technique be self-consistent, we have in fact 
retraced the steps that led Shannon to his proof of 
the uniqueness o f - } - ' . p  log p as an information 
measure. 

It follows that our derivation is very general. 
Entropy is a property of any vector pj ( j  = 1 , . . . ,  m) 
that is positive and additive. The argument applies 
equally to probability distributions in coding theory 
(Shannon, 1948), to optical intensity images (Burch, 
Gull & Skilling, 1983) and to the electron density in 
a crystal unit cell. 

Our derivation does not rely on any probabilistic 
interpretation: in fact we were careful to use the word 
'proportion' and not 'probability' specifically to avoid 
this confusion. We are led to prefer the maximum 
entropy map on grounds of consistency, but in this 
approach we are not led to quantify this preference 
probabilistically. We do not believe that the maximum 
entropy map is any more likely than any other map 
that fits the data. 

4. Thermodynamic derivation of S 

The classical derivation of S is Boltzmann's work in 
statistical thermodynamics. This does have a prob- 



ALASTAIR •K:: LIVESEY AND JOHN SKILLING 117 

abilistic interpretation, and several-authors., most 
recently Bricogne (1984a), have carried this over into 
crystallography, contending that t h e  maximum 
entropy map is indeed more probable than other 
maps. 

Place N classical quanta at random in the m cells 
of a map, and suppose that nj =Npj quanta are 
observed to fall in cell j. The probability of obtaining 
a full pattern {n} is proportional to the degeneracy 

a = N~III nj! (30) 

As N becomes large, Stirling's approximation yields 

log ~Q --~ NS, (31 ) 

where . .  

S =  -Y, pj log p~ (32) 

measures the Uncertainty in the location of any one 
quantum within the map. Thus, maximum entropy is 
equivalent to maximum degeneracy within a physical 
model in which a map density p(x) induces a propor- 
tional density of classical quanta. Other probabilistic 
derivations (Wilkins, Varghese & Lehmann, 1983) do 
not explicitly require N to become large. 

It is easy to take the analogy too seriously. Clearly, 
N must be finite, even though one uses the continuum 
formula - ~  p log p, otherwise one would be practi- 
cally certain to produce an extremely uniform map. 
Should N be the number of electrons per unit cell? 
If so, should classical statistics be replaced by Fermi- 
Dirac statistics ? Since the electrons cluster into atoms, 
should N count the  atoms? What if the atoms are 
bosons? Since the atoms cluster into amino acids (in 
proteins), should Ncount the amino acid units? How 
many unit cells are being observed anyway? Ques- 
tions like these have often confused discussion of 
maximum entropy (Kikuchi & Softer, 1977; Frieden, 
1983). 

We contend that N does not always have a useful 
meaning, and that the analogy with thermodynamics 
can be dangerously misleading. The thermodynamic 
analogy indicates that exp (NS) is a prior probability 
prob(p). The rules Of probability then require One to 
modulate this by the likelihood exp (-X2/2) to pro- 
duce the Bayesian posterior probability distribution 

prob (pI.D) ec prob (Dip) prob (p) ecexp ( N S - x 2 / 2 ) .  

(33) 
. .  

For any given N, the maximum entropy map would 
be the 'most probable' one, Which maximizes 

Q = N S - x 2 / 2 .  • • (34) 

At this maximum, p obeys 2N OS/Opi = OX2/Opi, so 
that 

N=IVx21/21VSI. (35) 
The parameter N would be chosen so that at this 
maximum X 2 would take its correct value close to the 

number of data. Thus, N would be chosen a posteriori, 
which is not entirely consistent with using exp (NS)  
as a prior probability. 

In any case, the underlying thermodynamic model 
is often not appropriate to scientific inference. Con- 
sider the following counter-argument due to Gull 
(1983). One is given a mixture of three gases, say A 4°, 
Kr 84, and 132Xe. The number of atoms N (say 10 24) 
and the mass M ( s a y  80N nucleons) are observed. 
What is the composition of the mixture, in terms of 
the proportions (PA, Pr,,, Pxe) of atomic populations ? 
The feasible compositions are parameterized as 
[1/11+(120/253)0, 10/11-(10/11)0,  (10/23)0], 
where 0 N 0 N 1. Among these the one with maximum 
entropy has 0 = 0.6352. It would, however, be rash 
to interpret exp (NS)  as a probability distribution 
over 0, because with N = 1024 the maximum is very 
sharply peaked and 0 would be effectively determined 
to within about +9 x 10 -12. Obviously, one must not 
draw such strong conclusions from such limited data. 
It would only be legitimate to do so if the thermody- 
namic quanta were chosen from a single exchangeable 
population. This would be true if the A, Kr and Xe 
were continually transmuting into each other, and the 
equilibrium was reproducibly determined by the 
given constraints N and M (Jaynes, 1957a, b). 

In scientific inference, one is not usually observing 
such an exchangeable system. For example, a crystal- 
lographer is given a specific crystal from the prepara- 
tion laboratory, from which he proceeds to observe 
certain parameters such as structure factors. The data 
fix the feasible set, possibly in terms of the likelihood 
exp (-X2/2), but that is all. The thermodynamic 
model contains hidden assumptions that are not 
applicable to crystallography. It cannot make the 
maximum entropy solution more probable than other 
members of the feasible set. 

5. Practical difficulties with N 

Regardless of any theoretical weaknesses, the use of 
a model with some number N of quanta may lead to 
practical difficulties. Specifically, maximizing 0 = 
NS -X2 /2  does not always give the maximum entropy 
solution. Consider the one-dimensional three-cell 
object (p~, p2, P3). Suppose that the two Fourier 
amplitudes are given exactly by 

Pl +P2+P3 --. 1 (36) 

and 
p2+ 2 2 

P2+P3 = 0"5, (37) 

leaving the single flee phase to be determined. On 
the pl+P2+P3= 1 plane, the allowed maps form a 
circle (Fig. 2). Let the phase be found indirectly 
through a logarithmic measurement of P~/P2, say 

log (p~/p2) = - 1 0 +  tr. (38) 
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Thus, 

X2 = [log (p, lp2)+ 1012/o.2, 

whilst the entropy is 

(39) 

S = -P l  log Pl -P2 log P2-  P3 log P3. (40) 

We seek to maximize S over X 2= 1. 
As the phase varies between 0 and 27r, it parameter- 

izes the S(X 2) curve shown in Fig. 3. Maximizing S 
at constant X 2 corresponds to choosing the uppermost 
curve in Fig. 3. 

Maximizing Q, on the other hand, requires us to 
pre-select a value of N. The loci Q = constant are 
straight lines in the (X 2, S) plane of slope I /2N.  Q 
is maximized by the map that lies on the highest such 
line (i.e. largest intercept on the S axis). Larve values 
of N give us maps along part AB of the trajectory. 
Small values give us CD. At the critical value of N 
corresponding to the slope of the chord BC, the 
solution jumps from B straight to C. Intermediate 
points BC are not obtained. A similar jump with 

(0,0,1) 

(1,0,0) (0,1,0) 

Fig. 2. Maps consistent with given amplitude data lie on the circle. 
The dashed line is the X 2 = 1 condition for tr = 6"5, along which 
the maximum entropy solution is M. A, B, C, D correspond to 
points in Fig. 3. 
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Fig. 3. Entropy S as a function of X 2, together with supporting 
chord BC (the insert is an enlargement of  the region near C 
and D). Maximizing Q gives points along AB and along CD 
only, so that point M cannot be reached. 

purely phaseless data was first noticed by Bryan 
(1980). We give our simpler example, not because it 
is typical of large crystallographic data sets, but 
because it can be analysed fully and because it illus- 
trates the danger of using a Lagrange multiplier 
method (based on N) to solve a non-convex con- 
strained optimization problem. 

A physical thermodynamic system constrained by 
~,2 (=,volume,) would normally split into two phases 
(B = 'gas', C = 'liquid') with proportions determined 
by the constraint value. When reconstructing a map, 
this prescription is wrong. It is certainly possible to 
find a linear combination of map B and map C that 
fits g2= l for any intermediate value of 0.: such a 
map lies along the straight line between B and C in 
Fig. 2. But this is not a maximum entropy map: it 
does not maximize S over that (or any other) value 
of 0. and it does not even fit the observed constraints. 

Maximizing Q has not worked because not all 
maximizations can be accomplished by Lagrange 
multipliers. Only those curves that are globally convex 
[i.e. d2S/d(x2)2<O] can be reliably treated by 
maximizing Q. All experiments that give data linear 
in/9 happen to fall into this class, but crystallographic 
X-ray amplitude data do not. 

Another difficulty with maximizing Q is that the 
feasible set could well be defined not as a probabilistic 
construct but by rigid YES/NO constrainst on maps. 
We have been implicitly assuming that the likelihood 
function prob(Dlp)  is continuous, and have 
expressed it as exp (-X2) 2 in terms of normally dis- 
tributed structure factor errors. If, on the other hand, 
the errors were rigidly constrained so that X2< 
constant, then the likelihood would be discontinuous 
at the boundary. Its gradient VX 2 would be undefined 
at this boundary, and so would the value of N 
(equation 35). This would make the prior probability 
exp (NS) undefined also. We cannot believe that the 
maximum entropy map should be favoured arbitrarily 
more or less strongly merely because the data happen 
to refer to a rigid inequality rather than being 
expressed in terms of normally distributed errors. 

Geometrically, N refers to the relative behaviour 
of S and X 2 normal to the constraint surfaces, X 2= 
constant, in the m-dimensional map space. N does 
not necessarily measure the relative behaviour of S 
and ) 2 parallel to the constraint surface, which is how 
any probabilistic preference for the maximum 
entropy map would be quantified. Without N, sub- 
sidiary constructions like partition functions (Jaynes, 
1957a, b) also disappear from the formalism. We 
maintain that the thermodynamic analogy obscures 
the simplicity of the maximum entropy method. In 
particular, exp (NS)  does not act as a modulating 
probability, which makes some maps more probable 
than others. The maximum entropy map is to be 
preferred on grounds of consistency and simplicity, 
but it is no more likely than any other feasible map. 



ALASTAiR~K. LIVE StaY AND JOHN SKILLING ll9 
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Let us :return to the mode!-in which :a large.number 
N of classical quanta (perhaps :thought of as atoms) 
are placed in the m subdivisions of a unit cell. For 
any set of  probabilities p, we have seen that 

S = - E  pj log pj (41) 

measures the uncertainty in the location of any single 
quantum. Maximizing S makes this location as uncer- 
tain as possible, so that the map is as uniform as 
possible overall. 

We can also (Navaza, Castellano & Tsoucaris, 
1983) assign a different entropy to the fluctuations of 
individual occupation numbers nj about their mean 
values 

(nj)= Npj. (42) 

The probability of a particular value (0, i, 2 , . . .  ) for 
nj is the Poisson formula 

prob ( nj ) = e-% ~ ,I n.~"~ , n.,j .,T (43) 

which for large N reduces to the Gaussian form 

prob (nj) = (2"n'(nj))-'/2 exp [-(nj  - (n~))2/2(nj)]. 
(44) 

The entropy of this distributiofl is 

/-/~ = -  ~ prob (nj) logprob (nj) (45) 
n~=0 

= ½ log (2~re(n~)). (46) 

Correspondingly, the probability of obtaining a full 
pattern n is 

(47) 
with entropy 

H = ½ ~ log (2zre(nj)) (48) 
J 

= constant + ½ Y. log pj. (49) 
J 

Apart from constants, this is the Burg entropy Y~ log pj, 
which we see is intimately connected with fluctuations 
in the map. 

Traditionally, crystallographers have worked 
almost exclusively in the reciprocal space of structure 
factor data and phases rather than the direct space 
of the electron density p and its proportions p. For 
notational simplicity, we cl~oose tinits such that F000 = 

p = ~ (p) = 1, so that p = p. The 15robability density 
of individual maps p is 

prob (p)ocexp [ - N~ j  (pj-(pj))2/2(pj)] (50) 

( ) • oc:exp -NY~p~/2(pj) . (51) 
J 

In reciprocal space, we may define individual struc- 
ture factors, 

Eh = ~, pj exp 2~rihj (52) 
: . .  J 

and mean Unitary structure factors 

Uh = E (Pj) exp 27rihj. (53) 

The probability distribution, now considered as a 
function of reciprocal space variables, is 

prob (E) oc exp-½N ~ E'q( U-l)qrEr, (54) 
qr 

where U- I  is the inverse of the circulant matrix Uqr = 
Uq-r of structure factors. (To avoid subsidiary index- 
ing, we use one-dimensional notation with all indices 
ranging from 0 to m - 1.) The entropy of this, obtained 
most easily by transforming (48), is 

H = constant + ½ log D,,, (55) 

where Dr,--det  [U] is the Karle-Hauptman deter- 
minant of structure factors Uq,. Maximizing the Burg 
entropy is thus identical to maximizing the corre- 
sponding determinant det [U]. 

Tsoucaris (1970) used the probability distribution 
(54) in his 'maximum determinant rule' for phase 
extension. Treating U as fixed, he advised adjusting 
one or more phases of individual structure factors E 
in order to minimize the quadratic form 

Qm = ~ E*( u-l)qrEr (56) 
qr 

and hence maximize the individual probability 
prob (E). Then the phases of U could be set to the 
new phases of E, and E re-adjusted. (Technically, he 
also introduced another determinant A,,+~ in order 
to avoid explicit matrix inversions in the formula for 
Qm.) When the iterative phase adjustment is complete, 
the most probable individual structure factors E 
coincide with the assumed values U in both ampli- 
tude and phase. This means that there are no extra 
constraints (incorrect phase assignments) imposed on 
the model of N random quanta. Just as in a real 
thermodynamic system, the entropy H will then take 
its maximum value consistent with actual (measured 
amplitude) constraints. Tsoucaris's rule thus leads to 
phase assignments that maximize H and det [ U]. 

Alternatively, the probability distribution (54), or 
equivalently (51), may be obtained directly as the 
maximum entropy distribution over variance con- 
straints 

N ~ p(pj)pE dpj=(pj)<-data. (57) 

This suggests a connection with Sayre's equation 

Np2=p (58) 
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for N identical point atoms (with the unit cell now 
subdivided sufficiently finely that the atoms are scat- 
tered sparsely with occupation numbers 0 or 1 only). 
Indeed, Tsoucaris first derived his rule from Sayre's 
equation, intuitively interpreting the left-hand side 
Np 2 in probabilistic terms using fluctuating structure 
factors E, and the right-hand side p in terms of data 
constraints on mean structure factors U. 

Whichever derivation is preferred, the maximum 
determinant rule is equivalent to maximizing the Burg 
entropy over measured constraints on the proportions 
p. This has been noted previously by Britten & Collins 
(1982), Narayan & Nityananda (1982), Piro (1983) 
and Steenstrup (1984). Collins & Mahar (1983) also 
explicitly pointed out that the Shannon/Jaynes and 
Burg entropies produce different maps. The 
maximum determinant procedure produces a map 
that allows the underlying fluctuations to be as large 
as possible. This would be an appropriate technique 
if one were interested in individual samples of occu- 
pation numbers, because their distribution would 
then be as wide and non-committal as possible. 

We maintain that this is not the crystallographic 
problem. Crystallographers wish to determine the 
proportions p of electron density through the unit 
cell. They do not wish to determine an electron density 
that maximizes the allowed fluctuations within an 
underlying model of dubious physical validity. 

7. Comparison of maximum entropy with 
maximum determinant 

Since positivity of/9 is built into the Burg entropy, 
the maximum determinant procedure was a consider- 
able advance over earlier simpler reconstruction tech- 
niques. However, it does not give an optimal map. 

To demonstrate this, we take a simple example 
from Nityananda & Narayan (1982) as presented by 
Skilling & Gull (1984). Suppose we have structure 
factor data on a unit cube. 

Foo 0 = l ,  FlOO = Fo~o = Foot = 0"5, (59) 
where 

Fhkl -- 

I/2 

f 
- i / 2  

d V p ( x , y ,  z) exp2rr i (hx+ky+lz ) .  (60) 

.~0 . . . .  i , , , , 

0 . . . .  I . . . .  

(-LO,O) 10,0,01 (~,0,0) 

Fig. 4. Cross-sect ion o f  Shannon / Jaynes  map. 

This is consistent with many distributions/9, among 
them eight point atoms at (+-~, +-~, +-~), two point 
atoms at ±(~,~,~), one point atom at (0, 0, 0) on a 
uniform background etc. 

The Shannon/Jaynes  solution is straightforward: 

p(x) = A exp (hI cos 27rx+ A2 cos 2try + A3 cos 2rrz). 

(61) 

To fit the data values, we need A = 0.391 and h l -- A2 = 
ha = 1.161, as shown in cross section in Fig. 4. Note 
that the x, y and z data correctly factorize out 
independently in the final solution. 

The Burg solution is less straightforward. Vari- 
ational maximization of ~log p d V under the con- 
straints yields 

p(x) = A/(1 - h i  cos 2zrx-h2 cos 2zry-h3 cos 2zrz). 

(62) 

This solution fails to factorize, so that the x data are 
interfering with y and z, and conversely, but there is 
also a more serious difficulty. We need h~ = A2 = As 

by symmetry, and then the most non-uniform allowed 
reconstruction (p -> 0) has h~ = A2 = A3 = 1/3. The map 
cannot become more non-uniform (larger A) without 
becoming negative near the origin. Unfortunately, 
this critical reconstruction has F~oo/Fooo = 0.34, and 
it is not possible to fit the required ratio F~oo/Fooo = 
0.5 woth any of the purely variational solutions. We 
recall that not all maximization problems can be 
solved with Lagrange multipliers. 

The variational equation (62) only holds where the 
solution is differentiable. Beyond the critical ratio of 
0.34, the variational solution can no longer accommo- 
date the required non-uniformity without becoming 
negative over some finite volume. Any extra non- 
uniformity must appear at the origin (where the vari- 
ational solution becomes singular) as a non-ditterenti- 
able 6 function condensation. For the required ratio 
of 0.5, the constrained maximum of B is (Fig. 5) 

p(x) =½[1-  ~(cos 27rx +cos  2zry + cos 27rz)]-' 

+ 0"2423(x). (63) 

Almost a quarter of the reconstruction is forced into 

20 . . . .  i . . . .  

I 

b~,O,OI t 0,0.01 ti, O,O) 

Fig. 5. Cross section of  Burg map. This map contains a 8 funct ion 
at the origin, as well as the r -2 singularity apparen t  From the 
graph. 
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a single point, without any evidence for this in the 
data. 
' This 'difficulty is!ikely to recfi'f oftenwith: crysta!io- 

graphic data. A Burg reconstruction f r o m  Structure 
factor data Fh is the reciprocal of a band-limited 
function 

p(x) = 1 / ~  Ah'Rh(X ). (64) 
h 

Generally, in three (or more) dimensions, this may 
not be able to fit a set of data Fh, even though the 
data are consistent with smooth positive (though sub- 
stantially non-uniform)reconstructions.  This is 
because singularities can appear in p while the data 
remain finite. At a small distance r from a zero 
(minimum because p - 0 )  of ~AhRh(X), p.(X) = 
O(r -2) ~ oo. This does not give a large contribution 
to the data because these are volume integrals 

dr 4"rrr2 . . ./9. 
8 functions in p do not give a large contribution 

to ~ log p d V either, because of the logarithm, so that 
the Burg entropy imposes no direct penalty on sin- 
gular reconstructions. For arbitrary data, it may well 
be that the only way of keeping p positive everywhere 
is to allow part of the solution to condense into 8 
functions, which do not affect the Burg entropy. 

On the other hand, 8 functions in 19 give infinite 
negative contribution to the Shannon/Jaynes form 
S = - ~  p log p d V, so that they only appear in the 
solution if the data categorically demand them - in 
which case they will presumably be correct. 

Of course there may be 8 functions in the truemap. 
The point is that crystallographers will find spiky 
reconstructions more difficult to interpret, especially 
when the Spikes are in the wrong places! The 
maximum determinant (Burg entropy) method gives 
extra structure to p without proper supporting 
evidence from the data. 

8. Conclusions 

The data come first. They tell us which maps are 
consistent with the data, and which are inconsistent 
and to be discarded. The data have then done all they 
can. 

We have shown that maximizing the Shannon/ 
Jaynes entropy -~ p log p d V is then the only way of 
selecting a reconstruction that satisfies simple con- 
sistency requirements. The argument rested on an 
absence of prior knowledge favouring any one part 
of the unit cell over any other: if such knowledge is 
available, it can and should be inserted as a prior 
model m(x) in a revised 'relative' entropy 

S = - ~  p log (p/m) dV (65) 

(Jaynes, 1968). 
The maximum entropy method will produce a high- 

quality map of electron density, which, on grounds 
of simplicity, consistency and general applicability, 

is t o  be preferred over all others that fit the given 
data. However, i t  is notany more likely'than.anY 
other. Such  claims can only ~rest o n  probabilistic 
calculations b a s e d  on the ,thermOdynamic analogy 
with a sy~stem of  discrete quanta, Not only have we 
shownthat the model based on N quanta Can mislead, 
but also that it can ~break down completely when 
nonlinear constraints, such as unphased structure fac- 
tor amplitudes, ale imposed o n i  t. 

An "analysis i3f fluctuations within the quan tum 
thermodynamic model leads to consideration of the 
Burg form of entropy, which is equivalent 1~o the 
maximum determinant formula. Maps produced by 
this method are liable to contain sharp features for 
which there is no compelling evidence in the data. 
We belie've that true (Shannon-Jaynes) maximum 
entropy maps will prove to be clearer and easier to 
interpret. 

However, we are not yet ready to demonstrate this 
with realistic crystallographic data. The Cambridge 
maximum entropy algorithm (Bryan, 1980; Skilling, 
1981) was designed principally for linear data, such 
as phase d structure factors. It deals easily with phased 
Fourier data in astronomical interferometry (Scott 
1981) and nuclear magnetic resonance spectroscopy 
(Sibisi, 1983 ; Sibisi, Skilling, Brereton, Laue & Staun- 
ton, 1984); with convolution data in optics (Daniell 
& Gull, 1980; Burch, Gull & Skilling, 1983) and 
high-energy astronomy (Skilling, Strong & Bennett, 
1983); with tomographic data (Kemp, 1980) in 
medicine and elsewhere; with extended X-ray absorp- 
tion fine structure data (Livesey, 1984) and with other 
linear data. 

Maximum entropy reconstructions have been 
achieved from two-dimensional phaseless Fourier 
data (Skilling, 1983). In some of the most powerful 
three-dimensional work so far, Bryan, Bansal, Folk- 
hard, Nave & Marvin (1983) have developed the 
Cambridge algorithm to reconstruct an image of a 
filamentous bacterial virus using incomplete fibre 
diffraction data. Other work has been reported by 
Wilkins (1983) and by Collins (1982), and Bricogne 
(1983, 1984b) has presented impressive work on 
three-dimensional data for crambin. However, a 
robust program for crystallographic data has yet to 
be written. 

We owe a great debt to Professor E. T. Jaynes, 
whose clear and profound papers on entropy (collec- 
ted as Jaynes, 1983) have deeply influenced our think- 
ing. It is a pleasure to thank him, Dr S. F. Gull and 
the numerous members of the Cambridge maximum 
entropy group, and Dr P. H. Gaskell for many en- 
lightening discussions over the years. It is with equal 
pleasure that we thank the organizers and participants 
of the 1982 CECAM Paris meeting and the 1983 
Medical Foundation of Buffalo meeting for encourag- 
ing our interest in crystallographic direct methods. 
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tion, and we acknowledge their constructive and help- 
ful comments. One of us (AKL) also thanks St John's 
College, Cambridge, and the Cavendish Laboratory 
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R o u n d - o f f  Errors  in In ter - exper imenta l  C o m p a r i s o n s  
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Abstract 
Two independent determinations of the same struc- 
ture may be compared by means of statistical tech- 
niques such as normal probability plots and X 2 
hypothesis tests. Computer simulations show that 
errors may arise in the application of these techniques 

0108-7673/85/020122-07501.50 

if rounded estimates of structural parameters and 
their e.s.d.s are used in the calculations. Round-off 
errors are particularly serious in goodness-of-fit 
hypothesis tests, since they increase the probability 
of making type I errors, i .e.  falsely rejecting the null 
hypothesis. 
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